References and Notes
<A NAME="RG24006ST-1">1</A>
Huisgen R.
The Adventure Playground of Mechanisms and Novel Reactions, In Profiles Pathways and Dreams
Seeman JI.
American Chemical Society;
Washington DC:
1994.
<A NAME="RG24006ST-2A">2a</A>
Huisgen R. In 1,3-Dipolar Cycloaddition Chemistry
Vol. 1:
Padwa A.
Wiley;
New York:
1984.
<A NAME="RG24006ST-2B">2b</A>
Tufiarello JJ. In 1,3-Dipolar Cycloaddition Chemistry
Vol. 2:
Padwa A.
Wiley;
New York:
1984.
<A NAME="RG24006ST-2C">2c</A>
Torssell KBG.
Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis
VCH;
New York:
1988.
<A NAME="RG24006ST-2D">2d</A>
Gothelf KV.
Jørgensen KA.
Chem. Rev.
1998,
98:
863
<A NAME="RG24006ST-2E">2e</A>
Jones RCF.
Martin JN. In
Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles
and Natural Products
Padwa A.
Pearson WH.
Wiley;
New York:
2002.
<A NAME="RG24006ST-3">3</A>
Döpp D.
Döpp H. In Houben-Weyl, Methoden der organischen Chemie
Part 2, Vol. E14b:
Klamann D.
Hagemann H.
Georg Thieme Verlag;
Stuttgart:
1990.
p.1372-1544
<A NAME="RG24006ST-4A">4a</A>
Coldham I.
Hufton R.
Chem. Rev.
2005,
105:
2765
<A NAME="RG24006ST-4B">4b</A>
Husinec S.
Savic V.
Tetrahedron: Asymmetry
2005,
16:
2047
<A NAME="RG24006ST-5">5</A>
Kanemasa S.
Synlett
2002,
1371
<A NAME="RG24006ST-6">6</A>
Pérez P.
Domingo LR.
Aurell MJ.
Contreras R.
Tetrahedron
2003,
59:
3117
<A NAME="RG24006ST-7">7</A>
Vidal S.
Bruyère I.
Malleron A.
Augé C.
Praly J.-P.
Bioorg. Med. Chem.
2006,
14:
7293
<A NAME="RG24006ST-8A">8a</A>
Vogt A,
Altenbach H.-J,
Kirschbaum M,
Hahn MG,
Matthäus MSP, and
Hermann AR. inventors; EP 976721.
; Chem. Abstr. 2000, 132, 108296j
<A NAME="RG24006ST-8B">8b</A>
Westermann B.
Walter A.
Flörke U.
Altenbach H.-J.
Org. Lett.
2001,
3:
1375
<A NAME="RG24006ST-9A">9a</A>
Katagiri N.
Okada M.
Morishita Y.
Kaneko C.
Tetrahedron
1997,
53:
5725
<A NAME="RG24006ST-9B">9b</A>
Baldwin SW.
Long A.
Org. Lett.
2004,
6:
1653
<A NAME="RG24006ST-9C">9c</A>
Stecko S.
Pasniczek K.
Jurczak M.
Urbanczyk-Lipkowska Z.
Chmielewski M.
Tetrahedron: Asymmetry
2006,
17:
68
<A NAME="RG24006ST-9D">9d</A>
Wang P.-F.
Gao P.
Xu P.-F.
Synlett
2006,
1095
For other chiral glycine equivalents, see:
<A NAME="RG24006ST-10A">10a</A>
Katagiri N.
Sato H.
Kurimoto A.
Okada M.
Yamada A.
Kaneko C.
J. Org. Chem.
1994,
59:
8101
<A NAME="RG24006ST-10B">10b</A>
Baldwin SW.
Young BG.
McPhail AT.
Tetrahedron Lett.
1998,
39:
6819
<A NAME="RG24006ST-10C">10c</A>
Tamura O.
Kuroki T.
Sakai Y.
Takizawa J.-I.
Yoshino J.
Morita Y.
Mita N.
Gotanda K.
Sakamoto M.
Tetrahedron Lett.
1999,
40:
895
<A NAME="RG24006ST-10D">10d</A>
Tamura O.
Gotanda K.
Yoshino J.
Morita Y.
Terashima R.
Kikuchi M.
Miyawaki T.
Mita N.
Yamashita M.
Ishibashi H.
Sakamoto M.
J. Org. Chem.
2000,
65:
8544
<A NAME="RG24006ST-10E">10e</A>
Baldwin SW.
Long A.
Tetrahedron Lett.
2001,
42:
5343
<A NAME="RG24006ST-10F">10f</A>
Baldwin SW.
Long A.
Org. Lett.
2004,
6:
1653
<A NAME="RG24006ST-11A">11a</A>
Osborn HMI.
Gemmel N.
Harwood LM.
J. Chem. Soc., Perkin Trans. 1
2002,
2419
<A NAME="RG24006ST-11B">11b</A>
Enderlin G.
Taillefumier C.
Didierjean C.
Chapleur Y.
Tetrahedron: Asymmetry
2005,
16:
2459
<A NAME="RG24006ST-12A">12a</A>
Racemic 3-hydroxy-1-butene (2a) was purchased from Acros Organics.
<A NAME="RG24006ST-12B">12b</A> For the preparation of 2b, see:
Hoeyer T.
Kjaer A.
Lykkesfeldt J.
Collect. Czech. Chem. Commun.
1991,
56:
1042
<A NAME="RG24006ST-12C">12c</A> For the preparation of 2c, see:
Bischofberger N.
Waldmann H.
Saito T.
Simon ES.
Lees W.
Bednarski MD.
Whitesides GM.
J. Org. Chem.
1988,
53:
3457
<A NAME="RG24006ST-12D">12d</A> For the preparation of 2d see:
Yasui K.
Fugami K.
Tanaka S.
Tamaru Y.
J. Org. Chem.
1995,
60:
1365
<A NAME="RG24006ST-13">13</A>
General Procedure: A mixture of nitrone (-)-1 (1.5 mmol) and alkene 2a-e (for nitrone/alkene ratio see Table
[1]
) was stirred in toluene (10 mL) at 110 °C [monitored by TLC (CHCl3-i-PrOH, 98:2)]. When the reaction was complete the solution was concentrated and the
residue was purified by flash chromatography (CHCl3-i-PrOH, 98:2) to afford the desired cycloadducts 3a-e and 4a-e. Cycloadduct 3a: [α]D
22 +65 (c 1, CH2Cl2); white solid; mp 97-100 °C (Et2O). 1H NMR (CDCl3, 300 MHz): δ = 0.80 (d, 3 H, J = 6.6 Hz, CH3), 0.86 (d, 3 H, J = 6.9 Hz, CH3), 0.93 (d, 3 H, J = 6.3 Hz, CH3), 0.93 (m, 1 H), 1.11 (d, 3 H, J = 6.6 Hz, CH3), 1.25 (t, 1 H, J = 12.3 Hz), 1.39 (m, 1 H), 1.44 (m, 1 H), 1.64 (m, 2 H), 1.83 (m, 1 H), 1.99 (m,
1 H), 2.06 (dt, 1 H, J = 3.0 Hz, J = 12.3 Hz), 2.55 (m, 2 H), 2.74 (s, 3 H, NCH3), 3.78 (dt, 1 H, J = 3.0 Hz, J = 6.9 Hz), 3.97 (dd, 1 H, J = 3.0 Hz, J = 7.5 Hz), 4.05 (dq, 1 H, J = 3.0 Hz, J = 6.6 Hz). 13C NMR (CDCl3, 75 MHz): δ = 18.4, 18.6, 22.2, 22.4, 24.1, 24.2, 25.9 (NCH3), 29.3, 31.5, 34.5, 40.6, 47.9, 65.8, 68.0, 80.1, 88.9, 172.8 (C=O). MS (ESI): m/z = 311 [M + H]+. Anal. Calcd for C17H30N2O3: C, 65.77; H, 9.74; N, 9.02; O, 15.46. Found: C, 65.66; H, 9.99; N, 8.83; O, 16.01.
Cycloadduct 3e: [α]D
22 +59 (c 1, CH2Cl2); white crystals, mp 94-95 °C (Et2O). 1H NMR (CDCl3, 300 MHz): δ = 0.81 (d, 3 H, J = 6.9 Hz, CH3), 0.85 (d, 3 H, J = 6.9 Hz, CH3), 0.91 (d, 3 H, J = 6.6 Hz, CH3), 0.93 (m, 1 H), 1.26 (t, 1 H, J = 12.3 Hz), 1.38 (m, 1 H), 1.44 (m, 1 H), 1.63 (m, 2 H), 1.72 (d, 3 H, J = 6.3 Hz, CH3), 1.82 (m, 1 H), 1.98 (m, 1 H), 2.03 (dt, 1 H, J = 2.5 Hz, J = 12.6 Hz), 2.42 (ddd, 1 H, J = 7.2 Hz, J = 12.6 Hz, J = 9.0 Hz), 2.74 (s, 3 H, NCH3), 2.86 (ddd, 1 H, J = 1.8 Hz, J = 5.4 Hz, J = 12.6 Hz), 3.92 (m, 3 H). 13C NMR (CDCl3, 75 MHz): δ = 18.4, 22.2, 22.3, 23.1, 24.1, 24.2, 25.9 (NCH3), 29.5, 34.5, 37.8, 40.7, 48.0, 48.8, 65.7, 80.8, 89.2, 172.5 (C=O). MS (ESI): m/z = 373 [M + H]+, 395 [M + Na]+, 767 [2 M + Na]+. Cycloadduct 4e: [α]D
22 +54 (c 1, CH2Cl2); yellow oil. 1H NMR (CDCl3, 300 MHz): δ = 0.83 (d, 3 H, J = 6.6 Hz, CH3), 0.85 (d, 3 H, J = 6.6 Hz, CH3), 0.92 (m, 1 H), 0.93 (d, 3 H, J = 6.3 Hz, CH3), 1.26 (t, 1 H, J = 12.3 Hz), 1.36 (m, 1 H), 1.39 (m, 1 H), 1.65 (m, 2 H), 1.67 (d, 3 H, J = 6.6 Hz, CH3), 1.83 (m, 1 H), 2.05 (dt, 1 H, J = 2.5 Hz, J = 12.0 Hz), 2.11 (m, 1 H), 2.22 (ddd, 1 H, J = 9.0 Hz, J = 6.0 Hz, J = 12.3 Hz), 2.69 (ddd, 1 H, J = 5.1 Hz, J = 12.3 Hz), 2.75 (s, 3 H, NCH3), 3.90 (ddd, 1 H, J = 5.1 Hz, J = 4.5 Hz), 4.02 (br d, 1 H, J = 9.0 Hz), 4.02 (dq, 1 H, J = 6.6 Hz, J = 7.2 Hz). 13C NMR (CDCl3, 75 MHz): δ = 18.3, 22.3, 22.3, 22.4, 24.1, 24.3, 26.0 (NCH3), 29.6, 34.5, 36.1, 40.6, 47.8, 48.0, 66.6, 81.2, 90.0, 172.4 (C=O). MS (ESI): m/z = 373.1 [M]+, 769.0 [2 M + Na]+. HRMS (ESI): m/z calcd for C17H29BrN2O2 [M]+: 373.1491; found: 373.1491.
<A NAME="RG24006ST-14">14</A>
Sample purchased from Acros Organics.
<A NAME="RG24006ST-15A">15a</A>
Young WG.
Winstein S.
J. Am. Chem. Soc.
1935,
57:
2013
<A NAME="RG24006ST-15B">15b</A>
Winstein S.
Young WG.
J. Am. Chem. Soc.
1936,
58:
104
<A NAME="RG24006ST-16">16</A>
Cardona F.
Valenza S.
Picasso S.
Goti A.
Brandi A.
J. Org. Chem.
1998,
63:
7311
<A NAME="RG24006ST-17">17</A>
General Procedure: A suspension of cycloadduct 3a-d or 4a-d (100 mg) and Pd(OH)2/C (20%, 15 mg) was stirred in MeOH (10 mL) at r.t. under H2 (1 atm). When the reaction was complete (TLC) (CHCl3-i-PrOH, 98:2), the mixture was filtered over Celite, concentrated, and purified by
flash chromatography (CHCl3-i-PrOH, 98:2) to afford the desired spiro-imidazolidinones 5a, 5b, 5d or 6a, 6b, 6d. Imidazolidinone 5a: [α]D
22 +13 (c 1, CH2Cl2); colorless oil. 1H NMR (CDCl3, 300 MHz): δ = 0.87 (d, 3 H, J = 6.9 Hz, CH3), 0.89 (d, 3 H, J = 6.9 Hz, CH3), 0.90 (m, 1 H), 0.93 (d, 3 H, J = 6.3 Hz, CH3), 1.16 (d, 3 H, J = 6.3 Hz, CH3), 1.38 (m, 2 H), 1.50 (m, 2 H), 1.58 (t, 1 H, J = 6.9 Hz), 1.68 (m, 2 H), 1.76 (m, 1 H), 1.81 (m, 1 H), 1.88 (ddd, 1 H, J = 2.1 Hz, J = 3.9 Hz, J = 13.1 Hz), 2.17 (br s, 1 H, OH), 2.76 (s, 3 H, NCH3), 3.72 (m, 2 H), 3.83 (m, 1 H), 5.57 (br s, 1 H, NH). 13C NMR (CDCl3, 75 MHz): δ = 17.5, 18.4, 22.1, 22.2, 23.9, 24.6, 25.4 (NCH3), 28.8, 34.0, 34.4, 46.6, 48.0, 58.3, 70.1, 73.4, 81.3, 174.6 (C = O). MS (ESI):
m/z = 313 [M + H]+, 647.0 [2 M + Na]+. HRMS (CI, isobutane): m/z calcd for C17H32N2O3 [M + H]+: 313.2491; found: 313.2490.
<A NAME="RG24006ST-18">18</A>
Typical Procedure: A solution of 1,3-imidazolidinone 5a (100 mg) and AcOH (25 mL) in aq HCl (3 N, 30 mL) was stirred at 80 °C for 2 h. The
reaction mixture was then evaporated to dryness and LiOH·H2O (200 mg) in THF-H2O (1:1, 10 mL) was added. The resulting mixture was stirred at r.t. for 2 h, then
concentrated to dryness and purified by reverse-phase flash chromatography (C18) to afford the desired amino acid 7. [α]D
22 -23 (c 1, H2O); white solid; mp 194-195 °C (MeOH). 1H NMR (D2O, 300 MHz): δ = 1.12 (d, 3 H, J = 6.6 Hz, CH3), 1.73 (m, 2 H, H-3), 3.50 (dd, 1 H, J = 4.8 Hz, J = 7.8 Hz, H-2), 3.65 (m, 1 H, H-4), 3.71 (m, 1 H, H-5). 13C NMR (D2O, 75 MHz): δ = 17.0 (CH3), 35.7 (C-3), 53.4 (C-2), 70.8 (C-5), 72.5 (C-4), 181.3 (C=O). MS (ESI, negative
mode): m/z = 162 [M - H]-. HRMS (CI, isobutane): m/z calcd for C6H13NO4 [M + H]+: 164.0923; found: 164.0919.
<A NAME="RG24006ST-19">19</A>
Crystallographic data for 3a, 3e, and 4a have been deposited with the Cambridge Crystallographic Data Centre, under the following
reference numbers: CCDC 606452 (3a); CCDC 601858 (3e); CCDC 606451 (4a). Copies of these data can be obtained on application to CCDC, 12 Union Road, Cambridge
CB2 1EZ, UK (e-mail: deposit@ccdc.cam.ac.uk).
<A NAME="RG24006ST-20A">20a</A>
Ito M.
Maeda M.
Kibayashi C.
Tetrahedron Lett.
1992,
33:
3765
<A NAME="RG24006ST-20B">20b</A>
Ina H.
Ito M.
Kibayashi C.
J. Org. Chem.
1996,
61:
1023
<A NAME="RG24006ST-21A">21a</A>
Houk KN.
Duh H.-Y.
Wu Y.-D.
Moses SR.
J. Am. Chem. Soc.
1986,
108:
2754
<A NAME="RG24006ST-21B">21b</A>
Curran DP.
Gothe SA.
Tetrahedron
1988,
44:
3945
<A NAME="RG24006ST-22">22</A>
Cardona F.
Goti A.
Brandi A.
Eur. J. Org. Chem.
2001,
2999
For recent [3+2] cycloadditions with kinetic resolution, see:
<A NAME="RG24006ST-23A">23a</A>
Socha D.
Jurczak M.
Frelek J.
Klimek A.
Rabiczko J.
Urbanczyk-Lipkowska Z.
Suwinska K.
Chmielewski M.
Cardona F.
Goti A.
Brandi A.
Tetrahedron: Asymmetry
2001,
12:
3163
<A NAME="RG24006ST-23B">23b</A>
Suárez A.
Downey CW.
Fu GC.
J. Am. Chem. Soc.
2005,
127:
11244
<A NAME="RG24006ST-23C">23c</A>
Meng J.-c.
Fokin VV.
Finn MG.
Tetrahedron Lett.
2005,
46:
4543